
Article

The relative resistance of children to sepsis
mortality: from pathways to drug candidates
Rose B Joachim1,†, Gabriel M Altschuler2,†, John N Hutchinson3 , Hector R Wong4,

Winston A Hide2,3,‡,* & Lester Kobzik1,5,‡,**

Abstract

Attempts to develop drugs that address sepsis based on leads devel-
oped in animal models have failed. We sought to identify leads
based on human data by exploiting a natural experiment: the rela-
tive resistance of children to mortality from severe infections and
sepsis. Using public datasets, we identified key differences in path-
way activity (Pathprint) in blood transcriptome profiles of septic
adults and children. To find drugs that could promote beneficial
(child) pathways or inhibit harmful (adult) ones, we built an in silico
pathway drug network (PDN) using expression correlation between
drug, disease, and pathway gene signatures across 58,475 microar-
rays. Specific pathway clusters from children or adults were
assessed for correlation with drug-based signatures. Validation by
literature curation and by direct testing in an endotoxemia model
of murine sepsis of the most correlated drug candidates demon-
strated that the Pathprint-PDN methodology is more effective at
generating positive drug leads than gene-level methods (e.g.,
CMap). Pathway-centric Pathprint-PDN is a powerful new way to
identify drug candidates for intervention against sepsis and
provides direct insight into pathways that may determine survival.
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Introduction

Sepsis is a major cause of global morbidity and mortality for which

there remains no targeted therapy (Opal, 2014; Seymour &

Rosengart, 2015; Weiss et al, 2015). Central to sepsis pathophysiol-

ogy is a dysregulated host inflammatory response (Aziz et al, 2013;

Wiersinga et al, 2014; Singer et al, 2016), suggesting that host-

directed immunomodulators could be of therapeutic benefit (Delano

& Ward, 2016). There is little agreement or certainty about which

particular cells or molecules are critical to defining sepsis outcomes

(Marshall, 2014). As a result, transcriptome analyses and systems

biology approaches have been eagerly embraced as better ways to

identify drug targets for sepsis (Maslove & Wong, 2014; Sweeney

et al, 2015; Wong et al, 2015; Davenport et al, 2016). Systematic

computational analysis represents an exciting class of approaches

for prediction and discovery of novel targets and therapeutic indica-

tions (Dubus et al, 2009; Dudley et al, 2011; Hurle et al, 2013)

reflecting their ability to provide virtual access to large numbers of

compounds and data relating to the target disease (Kim, 2015).

However, the hope that “omics-based approaches” might guide

the selection of promising therapeutics to target sepsis has not yet

been realized. This is despite the fact that tools like the Connectivity

Map (CMap) and Library of Network-Based Cellular Signatures

(LINCS; Lamb et al, 2006; Prathipati & Mizuguchi, 2015), which use

gene expression signatures to identify drug candidates, have been

available for over a decade. Obstacles to progress in developing

interventions for sepsis include discordant results across human

studies focused on gene-level changes (Sweeney & Khatri, 2016), as

well as the strongly debated limitations of animal models of sepsis

for these types of analyses (Seok et al, 2013; Osuchowski et al,

2014). Here, we address these problems by using available data on

human transcriptomes together with a powerful new approach that

combines pathway-level analysis of human transcriptome samples

with subsequent in vivo verification of findings in an animal model.

We postulate that this “human-data-first” approach can improve

results compared to prior efforts that began with findings in animal

models. Our pathway-level analysis exploits a natural phenomenon

in humans to directly compare two groups with widely disparate

rates of survival from sepsis—children and adults. Using novel path-

way-centered bioinformatic tools to optimize data analysis across
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multiple platforms, we were able to identify key differences in the

responses of both age groups to sepsis as well as identify potential

therapeutics.

The comparison of data from septic children and adults arose

from a striking finding, which at first glance seems unrelated to the

problem of sepsis. Despite similar rates of infection during the 1918

influenza pandemic, children aged 5–14 experienced a remarkably

lower rate of mortality compared to adults, dubbed the “honeymoon

period” (Ahmed et al, 2007). Puberty (~ age 14 in the early 1900s)

marked the age range in which mortality increased, suggesting that

sex hormones could influence changes in fatality rates. Importantly,

the “honeymoon period” is not limited to 1918 influenza-related

resistance to mortality. Historical mortality rates are much lower in

children after various high-fatality challenges, spanning from

bubonic plague to measles. Contemporary data for trauma, the

recent Ebola outbreaks, and other severe infections (Table 1) con-

firm the resistance. In particular, these data include lower case fatal-

ity rates for children with sepsis, both when linked to specific

pathogens (e.g., candidemia, Group A streptococcal sepsis, staphy-

lococcal sepsis), and when analyzed as a broad diagnostic category

(Table 1). We postulated that the better outcomes in children reflect

age-based differences in immune and inflammatory responses,

possibly magnified by effects of more frequent co-morbidities in

adults.

To better understand the basis for this childhood resistance, we

began by identifying public datasets of transcriptome profiling

performed on blood leukocyte samples in the high vs. low survival

groups (children and adults, respectively). The analysis used Path-

print (Altschuler et al, 2013; Davis & Ragan, 2013; https://biocond

uctor.org/packages/pathprint), a tool that is robust to batch effects

and allows for comparison of gene expression at the pathway activ-

ity level across multiple array platforms. After identifying dif-

ferences in pathway activity, we applied a novel method that is built

upon the correlation of the expression of > 16,000 disease signa-

tures from the Comparative Toxicogenomics Database (CTD), the

Pharmacogenomics Knowledgebase (PharmGKB), pathway signa-

tures from Wikipathways, KEGG, Netpath and Reactome, and drug

signatures from CTD, PharmGKB, and CMap, across > 50,000 indi-

vidual microarrays—the pathway drug network (PDN). The

network neighborhood of the sepsis pathway signatures was used to

identify the drugs that were most positively or negatively linked to

high-survival (child) or high-mortality (adult) signatures. We

assessed the validity of the top drug leads by analyzing prior data

collected in preclinical animal models of sepsis and also by direct

testing for improved survival in a mouse model of fatal endotoxemic

shock.

Results

Key pathways differentiate the adult and child responses
to sepsis

A total of 12 datasets reporting transcriptome profiling of whole

blood samples from sepsis patients were identified for analysis

from The Gene Expression Omnibus (GEO) and ArrayExpress data-

bases (Barrett et al, 2013; Kolesnikov et al, 2015). The ultimate

study population included 167 adults and 95 children, composed

of 55 and 64% males, and mean ages of 59 and 8, respectively

(Table 2). The Pathprint analysis tool was used to compare activ-

ity of pathways in adults and children with sepsis. Substantial dif-

ferences in active or depressed pathways were identified, as

illustrated in Fig 1. After applying thresholds based on the greatest

age-associated differences, the four pathway clusters (A–D),

detailed in Table 3, were used for further analysis. Tables EV1–

EV3 provide additional details of Pathprint scoring and the results

for all significantly different pathways.

PDN base network: construction and benchmarking

The PDN methodology is a novel, pathway-centric drug discovery

approach that tests whether an experimental gene signature is

positively or negatively correlated to a gene signature associated

with drug treatment. It relies on a base network constructed using

the expression correlations between each of 16,150 drug, disease,

and pathway gene signatures (collected from eight different data-

bases), averaged across 58,475 publicly available human micro-

arrays. By measuring the correlation between pathway, drug, and

disease gene signatures over more than fifty thousand experiments,

one can hypothesize whether the action that regulates, or is regu-

lated by two signatures (e.g., a drug and a survival associated

phenotype), may be linked and/or have similar actions (or oppos-

ing actions in the case of negative correlation). Since no compre-

hensive gold standard exists for evaluating the relationships

between drug and disease signatures, to test the efficacy of the

new PDN approach it was necessary to construct our own bench-

mark. Our benchmarking protocol involved the comparison of

curated, known drug–disease relationships from the National Drug

File Reference Terminology (NDFRT) and Structured Product

Labels (SPL) databases (1,055 in total), with the drug–disease rela-

tionships produced by the PDN methodology. Beyond our goal of

replicating the NDFRT and SPL drug–disease relationships using

the PDN, we also compared our methodology with an alternative

approach, Network Enrichment Analysis (NEA), a method based

on gene-level curated protein–protein interactions (PPI; Alexeyenko

et al, 2012). While both the PDN and PPI network approaches

performed better than randomly assigning drug–disease relation-

ships, the PDN decisively outperformed the PPI network at low

false discovery rates (Fig EV1). Based on this benchmarking exer-

cise, true-positive rates (TPRs) and false-positive rates (FPRs) were

measured for the PDN and used to create a series of network

cutoffs (the probability at which an edge is defined as true). From

these analyses, a PDN cutoff parameter was chosen for the final

base network that yielded as high as possible TPR (40%) while

still keeping the FPR low (6%).

PDN methodology results in high rates of positively validated drugs

Once the base network was constructed and subjected to bench-

marking analysis, the next step was to challenge the network with a

set of query pathways taken from our pre-defined Pathprint clusters

A–D. Sub-networks of the PDN were constructed that contained

these cluster pathways, together with their neighborhood of

connected nodes. After several pruning steps (described in the Mate-

rials and Methods), the resulting network focuses on the gene signa-

tures that relate most strongly to our cluster pathways. Through this
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method, four network modules incorporating each of the Pathprint

clusters A–D were created, containing 45 drug leads in total

(Table 4).

This approach and other drug discovery methodologies generate

enormous quantities of possible drug leads that necessitate efficient

validation methods. Considering the large number of previous stud-

ies that have evaluated compounds for possible benefit in sepsis

using animal models, we reasoned that one metric for evaluating

the results from the PDN would be how often the identified drug

leads corresponded to agents already shown to have positive (or

negative) effects experimentally. Hence, we conducted extensive

literature curation for each of the 45 compounds or closely related

agents (e.g., ibuprofen for NSAIDs) and scored the presence of prior

publications showing benefit or harm for survival in animal models

of sepsis.

The validation efficacy of the drug list derived from Pathprint-to-

PDN analysis was compared to three other gene-level drug discov-

ery approaches as well as to a control approach (drugs selected at

random from the entire list of CMap compounds). The first, a

gene-level approach, also used PDN, but analyzed differentially

expressed genes (DEGs) generated from a standard Limma analysis

of children vs. adult transcriptomes, rather than pathway clusters

(Appendix Fig S1). We found a substantially higher rate of positives

in the list produced by a pathway-level PDN approach: 54%,

compared to 27% for the gene-level approach, and 16% for

randomly selected drugs. We also obtained up- and down-regulated

DEGs from the BarCode method (McCall et al, 2010; Table EV4), an

approach that categorizes gene expression as on or off, and used

these genes, as well as the standard DEG list to query the LINCS

database (Wang et al, 2016), a greatly expanded version of CMap

(Lamb et al, 2006). The lists of compounds expected to have a posi-

tive effect on sepsis mortality (i.e., up- and down-regulated in adults

compared to children) were also curated to assess the frequency of

prior positive results in the literature. The percentage of positive

drug leads achieved by the Pathprint-to-PDN methodology was

significantly higher than with each of the four other methods

(P < 0.02 by Fisher’s exact test). The percent positives for each of

the five categories of drug leads are summarized in Fig 2, and

Table 1. Epidemiological examples of childhood resistance to infectious and non-infectious injury.

Disorder Child vs. adult difference Child age range Adult age range Metrica References

Historic data

1918 Pandemic flu 176.2 vs. 786.5 5–14 20–34 DP100K Linder and Grove (1947)

Tuberculosis 30.3 vs. 206.9 5–14 20–34 DP100K Linder and Grove (1947)

Measles 0.05 vs. 0.5 5–15 > 20 CFR Burnet (1952)

Yellow fever 144 vs. 759 6–15 21–60 DP100K Canela Soler et al (2009)

Typhoid fever 5 vs. 25 5–15 > 20 CFR Burnet (1952)

Plague 7 vs. 28 6–10 > 16 DR Russell (1948)

Modern data

Ebola 57 vs. 81
60 vs. 72.5

5–15
5–15

20–60
> 16

CFR Rosello et al (2015)
Team et al (2015)

H1N1 2009 0.01 vs. 0.08
1.7 vs. 5.0

5–14
0–17

25–64
18–64

DHR
DP100K

Van Kerkhove et al (2011)
Shrestha et al (2011)

Group A strep sepsis 2.6 vs. 18 < 13 19–96 CFR Megged et al (2006)

Staphylococcal sepsis 2 vs. 25 < 16 > 16 CFR Denniston and Riordan (2006)
Laupland et al (2008)

Sepsis 0.9 vs. 14.5 5–14 25–54 DP100K Melamed and Sorvillo (2009)

Sepsis (with co-morbidities) 16.0 vs. 27.6 5–14 20–59 CFR Angus et al (2001)

Sepsis (without co-morbidities) 6.3 vs. 12.8 5–14 20–59 CFR Angus et al (2001)

Severe malaria 6.1 vs. 26.7 ≤ 10 21–50 CFR Dondorp et al (2008)

Trauma (MOF) 17 vs. 35 < 16 > 16 CFR Calkins et al (2002)

Acute chest syndrome (sickle cell) 1.1 vs. 4.3 < 20 > 20 CFR Vichinsky et al (1997)

Candidemia 10.1 vs. 30.2
15.8 vs. 30.6

< 16
< 18

≥ 16
> 18

CFR
CFR

Blyth et al (2009)
Zaoutis et al (2005)

Invasive pneumococcus infection 3.8 vs. 21.5 < 13 14–106 CFR Rahav et al (1997)

Chicken pox 1.3 vs. 21.3
0.4 vs. 1.6

5–14
5–14

≥ 20
15–44

CFR
CFR

Meyer et al (2000)
Joseph and Noah (1988)

Pneumonia 2.5 vs. 9.4 5–14 20–64 CFR Tornheim et al (2007)

This table shows the difference in mortality between children and adults for a variety of infectious diseases and types of injury. The age range identified as
“child” or “adult” varied across the studies. When age was more narrowly stratified for children and adults, an average mortality rate was calculated based on the
age ranges of 5–12 and 20–60, respectively.
aCFR, Case fatality rate; DP100K, Deaths per 100,000; DHR, Deaths to hospitalization ratio.
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details of the lists and references identified are provided in

Appendix Tables S1–S5.

PDN-derived therapeutic leads improve survival in murine
endotoxemic shock

To directly investigate the utility of the PDN approach, we tested 10

of the top ranked compounds generated by the Pathprint-to-PDN

method (Table EV5) for their effects on survival in an endotoxin

shock model. Our goal was to use these drugs to directly modulate

adult pathway signatures to match pathway signatures in children

and potentially improve survival. Mice were pre-treated with the

compounds as described in the Materials and Methods, followed

by intraperitoneal administration of endotoxin. Five of the 10

compounds improved survival in this model (Fig 3). In all, eight of

the 10 compounds had not been previously reported in sepsis

survival studies; three of these eight showed benefits in our endo-

toxin shock model. The remaining two compounds were likely to be

effective based on prior publications (topotecan, a water-soluble

analog of camptothecin, and chlorpromazine, similar to piperac-

etazine) and they decreased mortality as expected.

Discussion

In this study, we sought to address the dearth of effective drug treat-

ments for sepsis by combining two novel approaches, summarized

in Fig 4. Firstly, we focused on a remarkable natural experiment—

the relative resistance to mortality in children vs. adults with sepsis.

By data-mining publicly available whole blood transcriptomes, we

were able to identify key differences in pathway regulation between

the two age groups. Continuing with a pathway-centric approach,

we used pathway-based correlation to build a novel in silico drug

discovery system to find drugs that might promote beneficial path-

ways (i.e., activated in children) or inhibit harmful ones (i.e., acti-

vated in adults). Evaluation of the resulting drug list by both

curation and direct experimentation showed substantial enrichment

for promising candidates.

The profiles of the five drugs found to be effective in vivo are

diverse. Topotecan has broad anti-inflammatory effects attributed to

inhibition of topoisomerase-dependent transcriptional activity of

pathogen-induced genes (Rialdi et al, 2016). Chlorpromazine and

amitriptyline share tricyclic structure and myriad potential mecha-

nisms of action, e.g., interactions with neural receptors, but also

inhibition of acid sphingomyelinase, which has been linked to

decreased inflammation (Sakata et al, 2007). Vinpocetine is a

synthetic derivative of the vinca alkaloid vincamine, with known

anti-inflammatory properties (Jeon et al, 2010). Khellin is a folk

medicine derived from the plant Ammi Visnaga and has a fura-

nochrome structure, but benefits and mechanism(s) of action are

poorly characterized. Although four of the five agents have anti-

inflammatory properties, at least three of the five drugs that had no

effect also have reported anti-inflammatory action [topiramate

(Dudley et al, 2011), noscapine (Zughaier et al, 2010), and etha-

crynic acid (Han et al, 2005)]. Additional investigation of these

drugs (and other leads in addition to the top 10) may help identify

meaningful commonalities more precisely.

By starting with human transcriptomic data in our comparison of

children vs. adults, we substantially increased the potential value of

subsequent analyses. Effectively, our approach uses human samples

Table 2. Demographic information on datasets used for data-mining.

Study GSE no.
Age
group

Age
mean

Age
range

Sex

Total Time when sampled
Array
GPL no. ReferencesM F

28750 Adult 60 38–82 6 4 10 ≤ 24 h 570 Sutherland et al (2011)

13015 Adult 55 40–81 11 18 29 Time of diagnosis 6947 Pankla et al (2009)

10474 Adult 58 18–83 18 16 34 ≤ 48 h 571 Howrylak et al (2009)

40586 Adult 59 37–75 8 7 15 ≤ 48 h 6244 Lill et al (2013)

57065 Adult 63 29–84 19 9 28 ~ 30 min after onset shock 570 Cazalis et al (2014)

33341 Adult 58 24–91 31 20 51 Time of diagnosis 571 Ahn et al (2013)

4607 Child 8 9–11 12 6 18 ≤ 24 h 570 Cvijanovich et al (2008)

9692 Child 7 5–9 6 2 8 ≤ 24 h 570 Cvijanovich et al (2008)

26440 Child 8 5–11 18 10 28 ≤ 24 h 570 Wynn et al (2011)

26378 Child 8 5–10 18 10 28 ≤ 24 h 570 Wynn et al (2011)

13904 Child 7 5–10 5 6 11 ≤ 24 h 570 Wong et al (2009)

40586 Child 8 7–8 2 0 2 ≤ 48 h 6244 Lill et al (2013)

Summary

Adult 59 18–91 93 74 167

Child 8 5–11 61 34 95

The GEO database was queried to identify microarray transcriptome datasets from sepsis whole blood samples of adults and children. Samples from patients
aged 18–91 comprised the adult group and patients aged 5–11 comprised the children’s group. The table above specifies each study GSE no., age category, age
mean, age range, the number of male or female patients, the timing of sample acquisition in the sepsis course, the array GPL no., and the reference used to
access the original study.
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and then verifies the methodology in an animal model. The limita-

tions of using animal models (especially mice) in preclinical sepsis

studies are well recognized. Mice typically lack many of the

common features of human sepsis patients (e.g., age, comorbidities,

drug treatments, supportive care; Osuchowski et al, 2014; Efron

et al, 2015) and exhibit highly species-specific transcriptomes after

injury or sepsis (Seok et al, 2013). In addition, no model of sepsis in

mice [e.g., endotoxemia, bacterial pneumonia, cecal ligation and

puncture (CLP)] can completely replicate the physiological

responses seen in human sepsis (Dejager et al, 2011). The strategy

used here avoids reliance on an animal model of sepsis as the initial

source of genetic information for the generation of a drug candidate

list. Moreover, even the “gold standard” sepsis model, cecal ligation

and puncture (CLP), is recognized as being technically difficult and

variable; different responses are elicited from lab-to-lab or even

from person-to-person within a given laboratory.

The (admittedly also imperfect) LPS model used in these studies,

does fulfill an important criterion: It mirrors the pre- vs. post-

pubertal human epidemiology that interests us, as detailed in our

recent publication (Joachim et al, 2017). Thus, we believe that the

endotoxemia model is a sufficient tool to begin our investigation of

the underlying mechanisms driving pre-pubertal resistance.

Figure 1. Sample heatmap generated from adult vs. child comparison using Pathprint.

Pathprint analysis was used to analyze adult and child transcriptomes at the pathway level. To minimize intra-group variation and maximize inter-group variation, two
filtering criteria were set in the generation of these data: (i) to maximize homogeneity within an age group based onminimizing the standard deviation, a cutoff of SD < 0.475
in the Pathprint score was used; (ii) to maximize differences between group comparisons using t-tests, Pathprint scores between groups were only included if P < 10�10. The
heatmap above was generated using the pheatmap package.

Source data are available online for this figure.
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Ultimately, we would like to expand the pre-pubertal resistance

model to a species that is more similar to humans in sensitivity to

endotoxin and sepsis—the rabbit. We especially note that a similar

resistance to mortality from LPS in pre-pubertal vs. pubertal rabbits

has been reported (Watson & Kim, 1963) although this finding was

not the focus of the cited study.

Unfortunately, due to the absence of effective drugs for human

sepsis, it is not possible to validate our method using human

data. Therefore, we instead relied on outcomes in mice for both

the in vivo testing (Fig 3) and the curation results (Table 4),

which compiled drug treatment effects in studies mostly

performed in murine models of sepsis. While imperfect, the

“reverse-translational” methodology (Efron et al, 2015) used in this

work attempts to exploit the many remaining similarities in the

murine and human responses to injury (Takao & Miyakawa, 2015).

By limiting our study to pathways identified as important in humans,

we diminish the risks of identifying murine-specific biology. Further

assessment of the efficacy of the identified drug “hits” will need to

be conducted in larger animal models and ultimately human

patients. Despite the limitations, our approach offers a substantial

improvement in isolating drugs that merit further evaluation in

preclinical assays. The child vs. adult difference in the resistance to

mortality may also prove useful as a starting point for drug discov-

ery in other severe infections and disorders (Table 1). The change

Table 3. Pathprint clusters chosen for drug candidate analysis using PDN.

Children Pathprint
score

Adults Pathprint
score

Children-adults
difference P-value

Cluster A (up in adults, down in children)

IL-2 down reg. targets (Netpath) �0.94 0.97 �1.91 1.87E-88

Shigellosis (KEGG) �0.93 0.96 �1.88 2.04E-88

Endocytosis (KEGG) �0.82 0.99 �1.82 1.95E-56

B cell receptor down reg. targets (Netpath) �0.95 0.84 �1.79 1.69E-109

Signaling by NGF (Reactome) �0.83 0.95 �1.78 9.11E-66

Pathogenic Escherichia coli infection (KEGG) �0.96 0.82 �1.78 1.51E-113

Pentose Phosphate Pathway (Wikipathways) �0.79 0.99 �1.78 1.80E-50

EGFR1 Signaling Pathway (Wikipathways) �0.78 0.99 �1.77 6.46E-57

p38 MAPK Signaling Pathway (Wikipathways) �0.80 0.95 �1.75 2.91E-62

{HCLS1,17} (Static Module) �0.96 0.63 �1.59 1.28E-64

Cluster B (down in adults, up in children)

{CTNNB1,130} (Static Module) 0.93 �0.95 1.87 2.71E-91

Metabolism of xenobiotics by cytochrome P450 (KEGG) 0.86 �0.98 1.84 2.55E-70

Drug metabolism—cytochrome P450 (KEGG) 0.84 �0.96 1.81 7.02E-66

Steroid hormone biosynthesis (KEGG) 0.97 �0.81 1.78 2.79E-128

Steroid Biosynthesis (Wikipathways) 0.87 �0.89 1.77 3.90E-84

Cluster C (unchanged adults, down in children)

{EP300,115} (Static Module) �0.99 �0.02 �0.97 4.30E-75

{HDAC1,108} (Static Module) �0.99 �0.02 �0.97 2.46E-91

Keap1-Nrf2 Pathway (Wikipathways) �0.89 �0.07 �0.82 5.94E-48

Kit receptor up reg. targets (Netpath) �0.92 �0.12 �0.80 1.92E-52

Sulfur relay system (KEGG) �0.85 �0.18 �0.67 1.00E-29

TGF beta receptor up reg. targets (Netpath) �0.94 �0.09 �0.85 2.87E-67

Viral myocarditis (KEGG) �0.84 �0.15 �0.69 2.03E-32

Cluster D (unchanged adults, up in children)

{FLI1,10} (Static Module) 0.72 0.23 0.48 7.52E-15

Melanoma (KEGG) 0.77 0.12 0.65 8.98E-26

Serotonin transporter activity (Wikipathways) 0.72 0.22 0.49 1.73E-14

Statin pathway (Wikipathways) 0.96 �0.08 1.04 4.30E-64

Four different clusters of pathways, generated through Pathprint analysis, were identified based on relative activation or inhibition in adults and children. The
clusters were defined as follows: cluster A): expression up in adults, expression down in children; cluster B) expression down in adults, up in children; cluster C)
expression unregulated (not significantly changed) in adults, down in children; cluster D) expression unregulated in adults, up in children. From each cluster,
pathways showing the greatest divergence between the two age groups were selected for further analysis by PDN. This selection was based on a percentage (N)
of samples that satisfied the criteria (N = 80% for clusters A–C; N = 70% for cluster D). More detailed descriptions can be found in Appendix Table S1.
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Table 4. Curation of drug lists by literature search through PubMed.

Pathprint to
drugs Cluster

Prior
data? DEGs to drugs

Prior
data? Random

Prior
data?

Fenoprofen A +/� 0297417-0002B Urapidil

Glibenclamide A + Indomethacin +/� Trifluoperazine

Asiaticoside A + SB-202190 + Metaraminol +

Topiramate A Acetohexamide + Nomegestrol

Suramin A +/� STOCK1N-35215 Coralyne

Hyoscyamine A + Emetine Citicoline

Pancuronium A Tacrine Octopamine

N-acetyl-L-leucine A Thioridazine Sulfapyridine

Mefenamic acid A + Suloctidil Butoconazole

Apigenin A + Biotin 0175029-0000

Camptothecin B + Cyclopenthiazide Tracazolate

Lincomycin B + Mebhydrolin +/� Tomatidine

Ganciclovir B Triprolidine +/� Tetroquinone

Fursultiamine B Colchicine Repaglinide

Tocainide B + Cinchonine Tiletamine

GW-8510 B Methoxamine Amikacin +

Tanespimycin B + Tanespimycin + Butirosin

Carbenoxolone B + Fluorometholone +/� Meptazinol +

Tacrolimus B + Nicardipine + Tolnaftate

Conessine B Quinpirole Fasudil +

Khellin C Cycloheximide � Enilconazole

Eldeline C Colchicine acid Sulfanilamide

Sulfathiazole C Meteneprost � Theophylline

Geldanamycin C + Puromycin Spiramycin

Cefoxitin C Digoxin Omeprazole

Procaine C + Naftidrofuryl Rolitetracycline

Procyclidine C Terfenadine Dexpropranolol +

Monorden C + Gelsemine Piribedil

Hexetidine C Sulindac +/� Sulfathiazole

Piperacetazine C + Drofenine Iobenguane

Desipramine A & C Thioguanine Dicycloverine

Cyclosporine A & C + Methylergometrine PF-0053978-00

Nifenazone A & C +/� Methotrexate Dipivefrin

Tanespimycin A & C + Ethacrynic acid Aztreonam +

Ethacrynic acid D Dexamethasone +/� Tomatidine

Noscapine D Tolazoline Bicuculline +

Tanespimycin D + 3-aminobenzamide + Ethosuximide

Mebhydrolin D Epitiostanol Meclozine

Vincamine D Benzthiazide Alimemazine

Altretamine D 0179445-0000 Monensin

Enalapril D + Lidocaine + Prestwick-691

Coralyne D + Alexidine Oxaprozin +/�
Napelline D Dihydroergocristine Amiodarone

Clindamycin D + Nifurtimox Ampicillin

A literature search using PubMed was performed to compare the number of therapeutic leads, generated by both pathway- and DEG-based drug prediction
methods, which were shown to confer a survival benefit in in vivo mouse models of sepsis. Compounds were scored as follows: positive (prior studies showing
survival benefit were identified: (+); both (prior studies showing both benefit and harm to survival were identified: (+/�); negative (prior studies showing only
harm to survival were identified: (�); blank (no relevant studies were identified: no entry).
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in resistance is linked to the puberty transition, suggesting a role for

sex hormones. Indeed, other experimental studies from our labora-

tory support this idea (Joachim et al, 2017; Suber & Kobzik, 2017)

and indicate this topic merits further investigation in human

studies.

In addition to the drug discovery goal of this work, the differences

in pathway activation between adults and children also provide clues

to the mechanisms driving childhood resistance to mortality. The

initial pathway clusters generated through Pathprint were selected

using relatively stringent criteria to maximize differences (see Mate-

rials and Methods). Using this approach, the pathways that were

down-regulated in children in comparison to adults (Clusters A & C,

see Table 3) involved response to infections (e.g., Shigellosis, Patho-

genic Escherichia coli infection, viral myocarditis), canonical

inflammatory and oxidative stress signaling pathways (e.g., IL-2

down-regulated targets, B cell Receptor down-regulated targets, p38

MAPK Signaling Pathway, Keap1-Nrf2 Pathway, TGF beta receptor

up-regulated targets), pathways involved in growth and cell prolifer-

ation (e.g., Signaling by NGF, EGFR1 Signaling Pathway, Kit Recep-

tor up-regulated targets), and pathways involved in chromatin

modification. These pathways suggest a chronic up-regulation of the

inflammatory response in adults in comparison with children. In

general, there were fewer pathways that met our criteria for signifi-

cant up-regulation in children in comparison to adults (Clusters B &

D), and these were found to lack direct associations with inflamma-

tory/immune responses. These pathways include lipid biosynthesis

and regulation (e.g., Steroid hormone biosynthesis, Steroid

Biosynthesis, Statin pathway, cytochrome P450 activity), as well as

proto-oncogenic genes and cancer (e.g., {CTNNB1, 130} [Static

Module], {FLI1, 10} [Static Module], Melanoma [KEGG]). Using

somewhat less stringent criteria, we identified the top 50 pathways

(out of 633, ~ top 8%) that were up-regulated in adults but down-

regulated in children or vice versa (ranked by the sum of their

respective percentile ranks; Appendix Tables S1 and S2). The

inflammatory (adult) vs. metabolic (child) difference is also evident

in this comparison. The change in resistance is linked to the pubertal

transition, suggesting a key role for sex hormones. Indeed, other

experimental studies from our laboratory support this idea (Joachim

et al, 2017; Suber & Kobzik, 2017) and indicate that this topic merits

further investigation in human studies.

We were able to carry out the comparisons reported here due to

the large number of datasets available that report whole blood tran-

scriptomes in sepsis. This reflects the systemic nature of the condi-

tion, the accepted scientific importance of leukocytes in sepsis

pathogenesis, and the relative ease of obtaining blood samples.

However, whole blood transcriptomes have limitations. The expres-

sion profiles of whole blood essentially represent a weighted sum of

the patterns of gene expression for each blood cell type and patients

with sepsis exhibit heterogeneity in the leukocyte composition of

the blood. No white blood cell count data were available in the data

annotations for these studies, making us unable to directly control

for these differences between individuals. However, the overall

leukocyte differential in septic children in the 5–11 age range is very

similar to that seen in adults (Stone et al, 1985; Park et al, 2014;

Wong et al, 2015). Finally, the analysis of whole blood does not

address potentially important contributions from endothelial,

epithelial, tissue-resident immune, and parenchymal cell types

(Cavaillon & Annane, 2006).

The novel drug development strategy applied here has more

general applicability beyond sepsis. Classical approaches to under-

standing drug–disease relationships rely on experimental assays to

relate cell states and perturbations to the etiology of different

diseases, but cannot sample all possible interactions. Fully

connected approaches such as the Molecular Signature Map (Ge,

2011) quantify interactions based on overlapping gene membership.

This method successfully integrates our knowledge of gene lists but

fails to address the issue of how drug, pathway, and disease signa-

tures influence each other. We have used microarray data from the

most highly represented platforms in GEO to determine the correla-

tion of the expression of over 16,000 drugs, diseases, and pathway

gene signatures in humans. In constructing the PDN, we used partial

correlations in order to quantify the relationship between network

nodes while still accounting for the influence of the other gene

signatures. The resulting network enables us to interpret the cell as

a whole based on the relationships and flow of information among

the myriad processes occurring within it.

Prior to the development of the PDN methodology, the steps used

in the CMap pipeline have been the main transcriptome-based drug

discovery paradigm. The standard CMap pipeline tests whether an

experimentally derived up- and down-regulated gene signature is

also up- or down-regulated in a set of drug perturbation expression

data. Broadly, this is equivalent to querying whether the transcrip-

tional impact of the experiment is similar, or opposite to the

transcriptional impact of a drug in CMap. Our alternative approach

tests whether an experimental gene signature is correlated or

Figure 2. Comparison of several methods of drug candidate
identification.

Five methods of transcriptome analysis/drug candidate identification were
compared in their ability to successfully produce drug targets in at least one prior
study showing a survival benefit from sepsis. (i) Pathprint-PDN: Comparison of
pathways by Pathprint and drug candidate analysis by pathway drug network
(PDN); (ii) DEGs-PDN: Comparison of differentially expressed genes (DEGs) by
standard methods and drug candidate analysis by PDN; (iii) Random: Drugs
chosen at random from the CMap database; (iv) DEGs-LINCS: Comparison of
DEGs generated by standard methods and drug candidate analysis using LINCS
database; and (v) BarCode-LINCS: Comparison of DEGs generated by BarCode
method and drug candidate analysis using LINCS database. The three gene-level
methods were found to be no better at generating positive drugs than picking
drugs at random. All methods produced significantly lower percent positive rates
than the Pathprint-PDNmethod (P < 0.02). Prism software (GraphPad) was used
to compare the frequency of prior studies showing benefit for drug leads Fisher’s
exact tests.
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Figure 3. Validation of select PDN drug candidates in an in vivo endotoxemia model.

Therapeutic leads generated using PDNwere directly tested for survival benefit using amurinemodel of endotoxemia. Select compounds were injected 24 h before and on the
day of LPS administration, using routes and doses specified in the methods. C57bl/6 female mice were injected with a high-lethality dose of Escherichia coli LPS (38–40 lg/g)
followed by a subcutaneous injection of sterile saline. Significant differences in concentration between drug and vehicle-treated pre- and post-pubertal mice are labeled with
****P < 0.0001, ***P < 0.001, **P < 0.01, or *P < 0.05. Percent survival was compared using a log-rank Mantel–Cox test.
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anti-correlated to the gene signature associated with drug treatment.

Importantly, the correlation is measured not just in the setting of the

transcriptome data from a single experiment, but across many

experiments (over 50,000 arrays from over 2,000 experiments). The

rationale for the PDN methodology is to quantify the relationship

between two signatures across many experiments rather than

assessing their similarity in a single test. If correlation is detected,

we can hypothesize that the action that regulates, or is regulated by,

those two signatures [i.e., from the drug and from the experimental

phenotype (e.g., better survival)] may be linked and/or have a simi-

lar action (or opposing action in the case of negative correlation).

Our approach is not meant to directly replace CMap, but to

greatly expand its power by exploiting experimental linkage. CMap

can take any signature as an input, but the pre-defined array sets

upon which is tested are fixed, and also limited in scope to experi-

mentally testable perturbations. The core focus and strength of the

PDN methodology is the ability to link any pair of gene signatures

in terms of their transcriptional regulation, irrespective of their

source. We have included a range of additional gene signatures in

the analysis so that the links are not restricted to drug interactions.

In addition, the output of the method is a network, rather than a list

of pair-wise relationships, meaning that clusters of drugs can be

detected along with any closely associated pathways. The long-term

goal is to make use of the relationships between the drug, pathway,

and diseases signatures in the network to suggest mechanisms of

action for drug leads. The eventual aim is to link pathways, drugs,

mutations, and diseases all based on the same background dataset.

Limitations of this approach include some of the well-recognized

problems in meta-analysis of microarray data in general (Tseng

et al, 2012) and in sepsis specifically (Fiusa et al, 2014; Sweeney &

Khatri, 2016). The Pathprint approach overcomes some of the prob-

lems in merging data from different platforms. However, because it

Figure 4. Summary workflow.

We began by identifying publicly available datasets from transcriptome profiling experiments that analyzed blood leukocyte samples from adult and child sepsis patients.
After data processing, we used Pathprint to translate these gene expression patterns to the pathway activity level. By comparing samples at the pathway level, the Pathprint
method is robust to batch effect and allows for comparison across multiple array platforms. After identifying age-associated differences in pathway activity, we used them to
facilitate drug discovery by constructing targeted pathway drug networks (PDNs). This novel method works by incorporating our target pathways into a base network built
upon the correlation in the expression of > 16,000 disease, pathway, and drug gene signatures across > 50,000 individual microarrays. The resultant network neighborhood
was used to identify drugs with positive or negative association with high-survival (child) or high-mortality (adult) pathways, respectively. We validated top drug leads by
curating and analyzing prior data collected in preclinical models of sepsis and also by directly testing their ability to improve survival in a mouse model of fatal endotoxemia.
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cannot integrate all platforms, some sepsis studies could not be

included. The study relied on very useful, but imperfect databases.

For example, the extensive reliance of CMap (and LINCS) on cancer

cell lines may skew results. The background data used for the calcu-

lation of the PDN correlations will be subject to a similar investiga-

tion bias in the samples uploaded to the GEO database. It is also

important to note that the quantity of available transcriptomic data

(microarrays & RNA-Seq datasets) has grown (and continues to

expand daily) since the PDN base network was first constructed. A

rich collection of other approaches to data-mining exists in the liter-

ature (Pathan et al, 2015; Henriques et al, 2017; Li et al, 2017). Inte-

gration of other analytic strategies might offer additional insights,

and this exploration merits future consideration. Similarly, an

expanded PDN based on a current version of the LINCS database

(now accessed at clue.io) might provide additional power.

Indeed, the overall success rate of drugs identified by “reversal of

signature” methods is unknown, but supported by individual

successes (Iorio et al, 2013; Musa et al, 2017). A further limitation of

existing, pair-wise approaches to determine drug–disease relation-

ships, including that approach presented here, is that no mechanistic

data can be inferred. The integration of pathway and experimental

gene signatures in the network allows for the identification of tightly

connected pathway sub-networks around each drug–disease connec-

tion. Furthermore, the network allows for both negative and positive

connections to be identified, significantly distinguishing this approach

from existing overlap-based in silico methods. These features improve

the identification of drugs with synergistic effects or sets of drugs with

independent mechanisms of action on a disease, factors that are

vitally important in overcoming polygenic drug resistance.

The ultimate aim of this work was to discover novel drug candi-

dates for the treatment of sepsis by data-mining and comparing

whole blood transcriptomes from two populations with naturally

high (adults) or low (children) susceptibility to death from sepsis.

Pathways with age-specific activation were identified through Path-

print and successfully used to interrogate the pathway drug network

(PDN), which allowed for the identification of medications that

could promote beneficial pathways during sepsis (i.e., activated in

children) or inhibit harmful ones (i.e., activated in adults). Valida-

tion by literature curation and direct experimentation in endotox-

emic mice indicated that the resulting drug list contained many

promising therapeutic candidates. These findings suggest that our

unique, pathway-centric approach to drug discovery may prove a

powerful new tool in identifying novel therapeutics for sepsis and

other complex medical conditions.

Materials and Methods

Study design

The objective of this study was to collect publicly available whole

blood transcriptomes from septic adults and children, and then

employ pathway-based bioinformatics tools to identify differentially

regulated pathways and discover novel drug candidates for the treat-

ment of sepsis. The GEO and ArrayExpress databases (Barrett et al,

2013; Kolesnikov et al, 2015) were used to identify publicly avail-

able microarray transcriptome datasets from whole blood samples

of septic patients. The criteria for inclusion of microarrays were (i)

the availability of annotation data for the age of subjects, (ii) the

use of microarray platforms supported by the Pathprint tool, and

(iii) satisfactory evaluation by quality control analysis.

Pathways with age-specific activation were identified through

Pathprint and used to interrogate the base PDN. The reliability of

the PDN in its ability to identify accurate drug-disease relationships

was benchmarked against known, curated relationships from the

NDFRT and SPL databases. Further validation of the drugs identified

through the PDN methodology was performed through literature

curation as well as direct experimentation in endotoxemic mice.

All validation experiments using mice were conducted in strict

adherence with the NIH Guide for the Care and Use of Laboratory

Animals. The number of mice was chosen based on past success in

evaluating interventions to improve survival in infectious disease

models. Endpoints in these studies were survival (for over 72 h) or

mortality. Analysis of mortality included counting deceased mice as

well as humane euthanasia of mice with severe, pre-terminal

morbidity.

Transcriptome data processing

GEO and ArrayExpress databases were queried to identify micro-

array transcriptome datasets from sepsis whole blood samples.

Samples from patients aged 5–11 comprised the children’s group

while samples from patients 18 years of age or older comprised the

adult group (details of demographics and datasets used are provided

in Table 2). The age range for the children’s group was chosen

because it is similar to the 5–14 age group that showed greater

survival in the 1918 influenza pandemic (Ahmed et al, 2007), but

adjusted to reflect the earlier onset of puberty in modern times (Ong

et al, 2006; Toppari & Juul, 2010).

The main workflow began by curating datasets and metadata of

interest. This curation process involved both automated steps (e.g.,

database searches for keywords) as well as manual work to compile

and identify whether the required metadata were available (e.g., age

of subject providing sample in a given dataset). In some cases, the

authors of the individual studies were contacted to obtain such

information. The retrieved metadata were filtered and standardized

and the relevant annotations of interest extracted (i.e., age, sepsis

status, gender, data locations). The curated metadata from each

study were then combined to create a covariate table that was used

to download each sample’s expression data using the GEOquery

package in R (Davis & Meltzer, 2007). To analyze data from multiple

array platforms, differential activation of pathways was assessed

using the R package Pathprint. To identify pathways with minimal

intra-group variation and maximal inter-group variation, two filter-

ing criteria were set: (i) to maximize homogeneity within an age

group based on minimizing the standard deviation (a cutoff of

SD < 0.475 in the Pathprint score was used); (ii) to maximize dif-

ferences between group comparisons using t-tests (Pathprint scores

between groups were only included if P < 10�10). Heatmaps to visu-

alize differences in pathway activation were generated using the

pheatmap package (cran.r-project.org/web/packages/pheatmap/

index.html).

A gene-level analysis was also performed on the subset of data-

sets that used the same array (Affymetrix HG-U133 Plus 2.0, GEO

accession GPL570) as follows. First, quality control and normaliza-

tion were performed using the arrayQualityMetrics (Kauffmann
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et al, 2009) and RMA packages (Irizarry et al, 2003). DEGs were

identified using Limma (Ritchie et al, 2015). The problem of batch

effects in gene expression analysis is well known (Leek et al, 2010;

Lazar et al, 2012). Pathprint addresses this issue by aggregating

expression at the level of a pre-defined pathway. In contrast, an

earlier methodology called the Gene Expression Barcode (McCall

et al, 2011) operates at the level of the gene. To allow for compar-

ison of results, the Barcode method was applied using the fRMA

package (McCall et al, 2010). Filtering by binary entropy measures

(< 0.295 for intra-group binary entropy and > 0.3 for inter-group

binary entropy) was used to identify genes with maximal expression

differences between age groups. The top up- and down-regulated

genes in the adult vs. child comparisons were used to query the

LINCS database (Duan et al, 2014). Using the percentile rank

(“mean_rankpt_2”), the top 45 compounds anti-correlated to the

adult profile were selected and subsequently evaluated for

published evidence of efficacy in sepsis models as described below.

Selection of pathways for analysis by PDN

Four different clusters of pathways, generated through Pathprint

analysis, were identified based on similar patterns of relative expres-

sion: cluster A) expression up in adults, down in children; cluster B)

expression down in adults, up in children; cluster C) expression

unregulated (not significantly changed) in adults, down in children;

cluster D) expression unregulated in adults, up in children. Path-

ways from each cluster that showed the greatest difference between

the two comparison groups were selected for further PDN analysis.

This selection was based on the percentage (N) of samples that

satisfied the criteria (N = 80% for clusters A–C; N = 70% for cluster

D). For example, the pathways selected from cluster A were up-

regulated in at least 80% of samples in adults AND down-regulated

in at least 80% of samples in children. For cluster D, use of the 80%

criterion produced only one pathway for evaluation. Hence, the

threshold was lowered to allow inclusion of the four pathways that

were up-regulated in at least 70% of the samples from children and

unregulated in adults.

Curation of gene-sets for PDN base network creation

A set of drug, disease, and pathway gene-sets were curated from the

following resources:

1 Comparative Toxicogenomics Database (CTD) (2,452 chemi-

cal/drug and 609 disease gene-sets): The CTD (Davis et al,

2017) includes curated data describing cross-species interac-

tions between chemicals and genes/proteins as well associa-

tions between chemicals, genes, and diseases. The data were

retrieved from the CTD, MDI Biological Laboratory, Salisbury

Cove, Maine, and NC State University, Raleigh, North Carolina

(http://ctdbase.org/) [5 November 2012 retrieval].

2 The Pharmacogenomics Knowledgebase (PharmGKB) (178

chemical/drug gene-sets, 78 disease gene-sets): PharmGKB

(Whirl-Carrillo et al, 2012) is a pharmacogenomics knowledge

resource that encompasses clinical information including

dosing guidelines and drug labels, potentially clinically action-

able gene–drug associations and genotype–phenotype relation-

ships. Data (updated 11/6/12) were downloaded from the

PharmGKB website (www.pharmgkb.org).

3 Connectivity Map (CMap) (12,200 chemical/drug gene-sets):

CMap (Lamb et al, 2006) is a collection of genome-wide tran-

scriptional expression data from cultured human cells treated

with bioactive small molecules. CMap contains 6,100 expres-

sion profiles representing 1,309 compounds. The data can be

retrieved from http://www.broadinstitute.org/cmap. The rank

matrix available on the website (contains 22,283 gene probes

and 6,100 samples) was used to build unique gene signatures

for each perturbation (drug treatment). Probe sets were ranked

in descending order of the ratio of the treatment-to-control

values. The probe that was most up-regulated relative to the

control was designated as top rank (#1), while the probe that

was most down-regulated relative to the control was desig-

nated as bottom rank (#22,283). Separate up- and down-

regulated gene signatures in response to each drug were

compiled using the top and bottom 1% of ranked genes,

respectively. These gene signatures served as a proxy for the

transcriptional impact of a drug and allowed for the addition of

CMap nodes to the PDN.

4 Pathprint (633 gene-sets): Gene-sets from the pathways used

by the Pathway Fingerprint (Pathprint; Altschuler et al, 2013)

were taken from the R package Pathprint (compbio.sph.harva

rd.edu/hidelab/pathprint/Pathprint.html) implemented in

Bioconductor (bioconductor.org/packages/pathprint/). The

pathway list contains gene-sets derived from a range of path-

way databases (Reactome, KEGG, Wikipathways, Netpath; see

Pathway Fingerprint for description and references), and

modules derived from a functional gene interaction network

known as “static modules” (Wu et al, 2010).

The gene-sets derived from each of the resources described

above were combined to create a library of 16,150 unique gene

signatures.

PDN base network construction

A base network was constructed using the correlation between the

expression levels of each of the 16,150 signatures, across 58,475

publicly available human microarrays (Affymetrix HGU133 Plus2)

obtained from GEO. The array set contained 2,120 experiments, the

same set of microarrays that make up the GPL570 expression back-

ground in the Pathprint package (see Bioconductor package for full

list). For each microarray, the genes were ranked by expression

level, from #1 (low expression) to T (high expression), where T is

the total number of genes in the array. The expression score, En(G),

for a gene signature, G, of size k, represented in an array by genes

g1, g2. . .gk, is defined by the mean squared rank of the member

genes, En(G) ¼ n�1 �P
R2
i , where Ri is the rank of gene gi in a

pathway containing n genes. The network edges are represented by

the partial correlation between each gene signature expression

score, which is the correlation coefficient between two gene signa-

ture expression scores after accounting for the influence of the other

gene signatures. The partial correlation was calculated using the R

package GeneNet, which makes use of shrinkage estimators of

partial correlation for fast and statistically efficient processing of the

data (cran.r-project.org/web/packages/GeneNet/index.html).

The significance of each of the connecting edges was assessed by

fitting a mixture model to the partial correlations, where the null

model is estimated from the data. The calculation used the R
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package, fdrtool (http://cran.r-project.org/web/packages/fdrtool/

index.html) to generate two-sided P-values for the test of non-zero

correlation for each edge, corresponding posterior probabilities for

edges, and q-values (Schafer & Strimmer, 2005). The PDN method

creates a network that is dynamic and can be extended to cover any

number of additional signatures. The network was benchmarked

using curated case–control interactions.

Network characterization

PDN network topology

The PDN degree distribution and degree cumulative probability are

shown in Fig EV2. At first glance, the degree distribution of the

PDN plotted on a log-log scale may be considered roughly linear—

indicative of a scale-free network following a power law distribution

with gamma of approximately 0.61. However, the cumulative proba-

bility plot, which would also be linear on a log-log scale under

scale-free conditions, clearly demonstrates significant divergence

from a power law distribution. An exponential distribution or power

law with exponential cutoff provides more reasonable but not exact

fits. Scale-free networks were thought to be a common characteristic

of biological networks (Albert, 2005), generally rationalized by the

hypothesis that such networks are robust to random breaks and

facilitate rapid inter-node communication by short average path

lengths and high clustering coefficients. However, as higher resolu-

tion experimental data have become available, the general scale-free

nature of biological networks has been increasingly questioned

(Lima-Mendez & van Helden, 2009). The degree distribution of the

PDN is evidence of a denser structure than would be expected from

a power-law distributed network and provides an additional exam-

ple of departure from scale-free topology. It should be noted that the

presence of the drug perturbation and disease-state signatures in the

PDN would also be expected to disrupt the structural characteristics

of a network based on canonical pathways alone.

Biological interpretation of PDN pathway relationships

We wished to establish whether pathways are correlated within the

PDN in biologically meaningful ways. We created a sub-network

consisting of all pathways from the network. Markov Clustering

(van Dongen, 2000) of pathway–pathway correlation using the

Graphia Pro environment (Kajeka.com) generated 38 biologically

consistent clusters containing between 6 and 34 pathways as nodes

(Table EV6). Pathway nodes vary in degree from 244 (Path-

way.{PRKACA,33} (StaticModule)) to 4 [Pathway.TNF-alpha/NF-kB

Signaling Pathway (Wikipathways)]. Interpretation of cluster

membership is complicated by the fact that only a partial under-

standing of known functional relationships between pathways

exists. We have begun to address this challenge in a separate study

of global pathway relationships (Pita-Juarez et al, 2018).

Clusters show pathways related by function. As cluster size

decreases, functions become more specific. One example of this can

be seen in our largest cluster, Cluster 1, which contains pathways

sharing functionality across cellular responses to stress, infections

and cancers, B and T Cell receptor signaling pathways, as well as

Tuberculosis, Leishmaniasis, and Toxoplasmosis pathways. Other

clusters are enriched for pathways in lipid metabolism (Cluster 3);

cell cycle and DNA replication (Cluster 6); immune signaling (Clus-

ter 8); DNA repair and replication and RAS family genes (Cluster

10); extracellular matrix function (Cluster 12); and electron trans-

port, respiratory chain function, oxidative phosphorylation, and

Parkinson’s disease (Cluster 14). Functional relationships between

pathways structured in this clustering approach may be insightful in

terms of providing data driven context to known relationships. For

instance, shared functionality in immune-mediated mechanisms of

stress surveillance in cancer is an existing observation (Seelige et al,

2018).

Benchmarking the PDN

In an effort to benchmark the PDN, we compiled two sets of curated

drug–disease relationships: 149 documented relationships from the

NDFRT database (46 diseases and 92 drugs) and 906 documented

relationships from the SPL database (58 diseases and 122 drugs).

The drug and disease terms from both of these databases have been

previously mapped to the PharmGKB identifiers (Zhu et al, 2013)

used in construction of the PDN. This allowed for direct comparison

of the two methods. CMap datasets have not been mapped to the

terms in the NDFRT and SPL databases and were thus not used for

benchmarking. True- and false-positive rates (TPRs, FPRs) were

measured for the PDN and used to create a series of network cutoffs,

and an ROC curve was plotted (Fig EV1). Beyond the goal of repli-

cating these drug–disease relationships using the PDN, we also

compared our methodology with an alternative approach, NEA.

Determining CMap drugs associated with query cluster pathways

Once the base network was constructed, we interrogated it with a

set of query pathways from pre-defined Pathprint clusters A–D. A

sub-network was constructed for each cluster (e.g., Cluster A) that

contained the nodes representing each of the member pathways of

that cluster, together with all base network nodes with connecting

edges to the cluster members. To assure that the new network was

specific to correlations associated with a given cluster of pathways,

we further pruned the sub-networks by removing base network

nodes if they did not connect to at least three or more of the path-

ways in the cluster. Next, we ranked the significance of the remain-

ing base nodes using the P-values of the edges connecting them to

each of the cluster nodes, aggregated by Fisher’s method. For all

non-CMap nodes, P-values were simply aggregated across the entire

pathway cluster into a single P-value. For CMap nodes, P-values

were first aggregated across the separate CMap up- and down-

regulated gene signatures for each drug and secondly across the

entire pathway cluster. An overall positive correlation between a

cluster pathway and a pair of CMap nodes was determined by

combining the P-values calculated for positive correlation with the

up-regulated CMap drug signature and negative correlation with the

corresponding down-regulated CMap drug signature. Overall, nega-

tive correlation between a cluster pathway and a pair of CMap

nodes was established in a similar way. The P-values for positive

and negative correlation were then ranked and combined into a

simple combined association score: Score = rank(negativeRank –

positiveRank)/(nDrugs/2) – 1, where negativeRank is the rank of

the negative P-value, positiveRank is the rank of the positive

P-value, and nDrugs is the number of drugs tested. Any CMap drug

with a P-value of > 0.1 for both positive and negative association

was given a score of 0. Thus, a negative score means that the drug
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opposes the activity of the cluster pathways, a positive score means

that drug enhances the activity of the cluster pathways. A score of 0

means no significant interaction. The 10 highest negatively scoring

drugs each for clusters A and C, the 10 highest positively scoring

drugs each for clusters B and D, as well as the top 5 within the over-

lap of clusters A and C (a total of 45 drugs) were prioritized for vali-

dation as described in the following section. While the PharmGKB

database also contained drug signatures, they were non-directional

(up and down-regulated genes are not distinguished). Because it

would have been impossible to distinguish a correlated vs. anti-

correlated signature using the PharmGKB signature, we chose to

perform all final analyses using the CMap signatures.

Determining CMap drugs associated with an individual
gene signature

To compare PDN functionality based on a network analysis of a

target cluster of pathways with standard single gene list-based analy-

sis, we queried the PDN directly with a differential signature derived

from adult and child transcriptomes (see above). The top 500 up-

and down- regulated probes from a comparison of children vs. adults

using datasets limited to a single array platform (GPL570) were

matched to 427 and 405 up- and down-regulated genes in CMap.

These gene signatures were incorporated into the PDN and ranked

for positive or negative association with CMap drug signatures by a

similar approach as the Pathprint cluster pathways described above.

The differentially expressed genes were split into up-regulated and

down-regulated gene-sets. These gene-sets were then introduced into

the PDN as two new nodes and evaluated separately. The P-values of

the edges connecting each of the new nodes to the separate CMap

up- and down-regulated gene signatures were aggregated for each

drug. This calculation helped to quantify whether the up- and down-

regulated components of the adult vs. child differentially expressed

signatures were positively or negatively associated with each CMap

drug. Then, an overall positive or negative correlation between a dif-

ferential gene signature and a CMap drug was determined by

combining the P-values calculated for the up-regulated and down-

regulated parts of the signature. The top 45 negatively associated

drugs were selected for further validation.

Validation of drug leads

To validate the top 45 therapeutic leads generated by each drug

discovery methodology, a literature search using PubMed was

performed. We used terms (i.e., keywords: survival, mortality,

sepsis, endotoxin) to identify studies that tested a particular drug, or

a closely related compound, for in vivo benefit in animal models of

sepsis. Compounds were scored as follows: positive (prior studies

showing survival benefit were identified); both (prior studies show-

ing both benefit and harm to survival were identified); negative

(prior studies showing only harm to survival); no score was assigned

when no relevant studies were identified. The efficacy of the Path-

print-to-PDN methodology was compared to several other transcrip-

tome-to-drug discovery approaches (described in results and Fig 2)

as well as to drugs randomly chosen from the CMap database.

Ten drugs were selected from the pool of drugs identified using

the Pathprint-to-PDN methodology. These were chosen to sample

from all clusters and to include agents both with and without prior

evidence of potential benefit. Substitutions with highly similar

compounds were made for some of the predicted drugs. For three of

the four substitutions made (topotecan, chlorpromazine, amitripty-

line), the rationale was driven by the existence of publications

showing survival benefit in animal models using the substituted

drug ((Brand et al, 2008; Rialdi et al, 2016; Villa et al, 1995),

respectively). These data did not exist for the original predicted

drugs. For the final pair, vincamine/vinpocetine, there are no

published data demonstrating a survival benefit, but there are data

showing that vinpocetine has some anti-inflammatory activity (Jeon

et al, 2010). No similar data were found for vincamine, thus moti-

vating our choice of vinpocetine.

The compounds were directly tested for effects on survival using

a murine model of endotoxemia. These experiments were conducted

in strict adherence to the NIH Guide for the Care and Use of Labora-

tory Animals, and under a protocol approved by the Harvard Medi-

cal Area Institutional Animal Care and Use Committee (IACUC).

C57bl/6 female mice (5 weeks old, Charles River, Wilmington, DE)

were injected with a high-lethality dose (e.g., 38–40 lg/g) of E. coli
LPS (L3755; Lot: 123M4096V; Sigma-Aldrich, St. Louis, MO, USA)

between hours 5 and 7 of the light period in the animal facility (12–

2 PM). In order to mitigate fluid loss and dehydration, each mouse

was also given a subcutaneous injection of sterile saline (equal to

2.5% of body weight). To test the effects of drug leads, compounds

were injected 24 h before and on the day of LPS administration,

using routes and doses specified in Table EV7. Analysis of mortality

included counting deceased mice as well as humane euthanasia of

mice with severe, pre-terminal morbidity (scored by evaluation of

appearance, movement, and response to touch).

Statistical analysis

The statistical methods used in transcriptome comparisons as well

as the creation and application of the PDN methodology are detailed

in the sections above. Fisher’s exact test was used to compare the

frequency of prior studies showing benefit for drug leads across the

multiple transcriptome-to-drug methodologies. A log-rank (Mantel–

Cox) test was used to analyze murine endotoxemia survival data.

Both of these statistical analyses were performed using Prism soft-

ware (GraphPad, San Diego, CA).

Expanded View for this article is available online.
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